計測システム研究会2024

PTEP

Prog. Theor. Exp. Phys. 2023 123H02(16 pages) DOI: 10.1093/ptep/ptad140

Development of a fast-response Parallel-Plate Avalanche Counter with strip-readout for heavy-ion beams

大強度重イオンビームのための位置感応検出器の開発

大田晋輔^A、小嶋玲子、堂園昌伯^B、今井伸明、道正新一郎^c、下浦享、 銭廣十三^B、稲葉健斗^B、土方佑斗^B

RCNP^A、京大^B、理研^c

1.イントロダクション 2.現状 3.課題 4.次期開発 5.まとめ

○自己紹介

- ・原子核科学研究センターCNS(核ダイナミクスグループ)
- ・修士:SR-PPAC開発、博士:陽子過剰核の質量測定
- ・学部の頃は電子線加速器を使った応用実験のためのCWレーザー開発

1.イントロダクション

2.現状 3.課題 4.次期開発 5.まとめ

計測システム研究会2024

Parallel Plate Avalanche Counter

- 数nsの早い立ち上がり
- ・低出力 🛜 - 軽イオン(H, He, Li,..)は測定困難
- ≻ Delay-line PPAC (従来機)

計測システム研究会2024

H.Kumagai, et al., Nucl. Instrum. Meth. Phys. Res. B. 317, (2013) 717.

Beam広がり ~100 mm @Dispersive focal plane

- Delay time: 2.04 ns/pitch

・遅延線による両読み

- Position resolution : ~ 212 um (σ)

 $x = K * (T_1 - T_2)/2$ K: slope factor

- 最大で100 ns程度の遅延時間, <u>遅延時間はhit positionによる</u>

→ 1 MHz 程度の広がったビームにも対応できる Strip 個別読出しをしよう

1.イントロダクション

2.現状 3.課題 4.次期開発 5.まとめ

Strip-Readout PPAC <構造>

- ・電極の材質、ストリップサイズはBigRIPS標準 DL-PPACと同等
- ・遅延線を個別読みだし基板に変更
- ・多チャンネル(>100ch)を FPCで取り回し

Configuration of Electrode

	Prototype	Standard
Sensitive area [mm ²]	$150(X) \times 150(Y)$	$240(X) \times 150(Y)$
Gap between anode and cathode [mm]	4	4.3
Strip width [mm]	2.57 (X, Y)	2.55 (X), 2.58 (Y)
Number of strips (channels)	58 (X, Y)	94 (X), 58 (Y)

信号出力

- ・ストリップから個別に誘導電荷を読み出す
- ・Time over Threshold (ToT)で波高情報を高速に取得
 - 最大信号幅~50ns
 - Flash ADCは高価 (> ¥10,000/channel)
 - 積分するには時間がかかる

• ASD Board: HATASHI REPIC, RPA-132

Gain	0.8 V pC ⁻¹	
Time constant of integrator	16 ns	
Number of channels	64 ch	
Input charge	\pm 1.0 pC	
Threshold control voltage	$0 \sim \pm 0.6 \text{ V} (\pm 0.054 \text{ pC equivalent})$	
Input (Output) type	LVDS	
Board Size	$160 \text{ mm} \times 180 \text{ mm}$	

信号出力

α-sourceを使ったPreampのAnalog信号出力

ASD-Chip Circuit diagram

Figure 4-2 Schematic diagram of the preamplifier, main-amplifier and baseline restorer.

Signal transfer

- ・真空槽⇔大気の取り回し
- ・(あたりまえだが)
 ノイズに強い伝送系は重要

例えば、、、

RF deflectorからの/イズをもろに受ける

> 種々の対策を試したが、 回路系・伝送系のGroundを強化することで対処

Strip-Readout PPAC <解析法>

- ・分割電極の電荷(ToT)の差と位置は 一対一だが一般に非線形
- ・だが、隣接電荷(ToT)差の分布の積分値を 使って一価の関数で表せる
 - ストリップ端からの距離

$$\Delta x = \frac{s}{2} \times k(\Delta q)$$

s: strip width

電荷差(ToT width)から距離へのマッピング係数

$$k(\Delta q) = \frac{\int_0^{\Delta q} f(q) dq}{\int_0^{\Delta q_{\max}} f(q) dq},$$

※ビームのhitを一様性を仮定

Strip-Readout PPAC <性能評価>

> Proof of principle Exp. @ HIMAC

> Test Exp. @ RIBF

¹³²Sn/⁴⁸Ca, 300 Mev/u

- Best position resolution: 100 um(σ)
- resolution at high intensity (770kppp): 121um(σ)

- Keep 99% detection efficiency
 @ 700kHz
- Position resolution: 135 um(σ)

1.イントロダクション 2.現状 3.課題

4.次期開発 5.まとめ

きっかけ

2021年 Mass production → ビームライン全体をカバーする8台!

2022年 SHARAQ18/19

"Determination of neutron capture cross sections for r-process nucleon synthesis"

SHARAQ13

"Direct mass measurements of proton dripline nuclei"

2024年 SHARAQ12

"Single-particle states in fp-shell nuclei through ⁵⁰Ca(d,p)⁵¹Ca transfer reaction"

…思ったより分解能がでてない?

- ・ 個体差あり
- ・ Onlineで分解能の自己評価が難しい

原因(?) その1. IDごとのゲインの違い 検証中

> IDごとにToTの分布に差が見える

・相対的にIDごとのゲインを補正

・Charge injectorなどでpreampのcalibration tableをつくることは可能

> Preampのchip(4ch)ごとに傾向がある?

原因(?) その2. 信号ケーブル 検証中

≻ 信号ケーブル:真空槽では2 m程度のものを使用

Cable capacitance: 27 pF/ft

ケーブルなしで直にPreampをつけてみると。。

分解能の指標

計測システム研究会2024

1.イントロダクション 2.現状 3.課題 4.次期開発 5.まとめ

ASAGI-Cardの試験運用

背景

- ・ 今使っているASDカードが製造中止
- なるべく低電圧で検出器に優しく運転したい (アンプでゲインを稼ぐ)

ASAGI-Card

・時定数・閾値等の可変性

ASAGI + SR-PPAC Studied by 土屋諒さん(立教大)

SPADI

時間分解能?

- ・ビームライン検出器としては結構重要 (OEDOにおけるdegrade後のエネルギー測定)
- ・MCP (Micro Channel Plate)は大型化、High rate耐性がネック
- ・Pestov Spark Counterのように高ガス圧・高電圧は非現実的
- ・Anode信号は比較的早く250ps程度だが、位置依存性などstudyの余地はあり

まとめ

現状の開発状況・成果

- 高分解能・高効率・高速応答を持った重イオンの位置検出器開発
- ・Strip個別読出し + ToTによる波高情報取得 + 電荷分布による位置解析
- ・700kHzでも99%の高検出率、位置分解能向上

課題·次期開発

- ・ Best performanceを出せる状況を定量化したい
- ・タイミング検出器への応用性の検討